Despite the huge advancement in knowledge discovery and data mining techniques, the X-ray diffraction (XRD) analysis process has mostly remained untouched and still involves manual investigation, comparison, and verification. Due to the large volume of XRD samples from high-throughput XRD experiments, it has become impossible for domain scientists to process them manually. Recently, they have started leveraging standard clustering techniques, to reduce the XRD pattern representations requiring manual efforts for labeling and verification. Nevertheless, these standard clustering techniques do not handle problem-specific aspects such as peak shifting, adjacent peaks, background noise, and mixed phases; hence, resulting in incorrect composition-phase diagrams that complicate further steps. Here, we leverage data mining techniques along with domain expertise to handle these issues. In this paper, we introduce an incremental phase mapping approach based on binary peak representations using a new threshold based fuzzy dissimilarity measure. The proposed approach first applies an incremental phase computation algorithm on discrete binary peak representation of XRD samples, followed by hierarchical clustering or manual merging of similar pure phases to obtain the final composition-phase diagram. We evaluate our method on the composition space of two ternary alloy systems- Co-Ni-Ta and Co-Ti-Ta. Our results are verified by domain scientists and closely resembles the manually computed ground-truth composition-phase diagrams. The proposed approach takes us closer towards achieving the goal of complete end-to-end automated XRD analysis.
translated by 谷歌翻译
由于低成本的惯性传感器误差积累,行人死的估算是一项具有挑战性的任务。最近的研究表明,深度学习方法可以在处理此问题时获得令人印象深刻的性能。在这封信中,我们使用基于深度学习的速度估计方法提出了惯性的进程。基于RES2NET模块和两个卷积块注意模块的深神经网络被利用,以恢复智能手机的水平速度矢量与原始惯性数据之间的潜在连接。我们的网络仅使用百分之五十的公共惯性探子仪数据集(RONIN)数据进行培训。然后,在Ronin测试数据集和另一个公共惯性探针数据集(OXIOD)上进行了验证。与传统的阶梯长度和基于标题的基于系统的算法相比,我们的方法将绝对翻译误差(ATE)降低了76%-86%。此外,与最先进的深度学习方法(Ronin)相比,我们的方法将其ATE提高了6%-31.4%。
translated by 谷歌翻译
Text style transfer aims to alter the style of a sentence while preserving its content. Due to the lack of parallel corpora, most recent work focuses on unsupervised methods and often uses cycle construction to train models. Since cycle construction helps to improve the style transfer ability of the model by rebuilding transferred sentences back to original-style sentences, it brings about a content loss in unsupervised text style transfer tasks. In this paper, we propose a novel disentanglement-based style transfer model StyleFlow to enhance content preservation. Instead of the typical encoder-decoder scheme, StyleFlow can not only conduct the forward process to obtain the output, but also infer to the input through the output. We design an attention-aware coupling layers to disentangle the content representations and the style representations of a sentence. Besides, we propose a data augmentation method based on Normalizing Flow to improve the robustness of the model. Experiment results demonstrate that our model preserves content effectively and achieves the state-of-the-art performance on the most metrics.
translated by 谷歌翻译
Script event prediction aims to predict the subsequent event given the context. This requires the capability to infer the correlations between events. Recent works have attempted to improve event correlation reasoning by using pretrained language models and incorporating external knowledge~(e.g., discourse relations). Though promising results have been achieved, some challenges still remain. First, the pretrained language models adopted by current works ignore event-level knowledge, resulting in an inability to capture the correlations between events well. Second, modeling correlations between events with discourse relations is limited because it can only capture explicit correlations between events with discourse markers, and cannot capture many implicit correlations. To this end, we propose a novel generative approach for this task, in which a pretrained language model is fine-tuned with an event-centric pretraining objective and predicts the next event within a generative paradigm. Specifically, we first introduce a novel event-level blank infilling strategy as the learning objective to inject event-level knowledge into the pretrained language model, and then design a likelihood-based contrastive loss for fine-tuning the generative model. Instead of using an additional prediction layer, we perform prediction by using sequence likelihoods generated by the generative model. Our approach models correlations between events in a soft way without any external knowledge. The likelihood-based prediction eliminates the need to use additional networks to make predictions and is somewhat interpretable since it scores each word in the event. Experimental results on the multi-choice narrative cloze~(MCNC) task demonstrate that our approach achieves better results than other state-of-the-art baselines. Our code will be available at \url{https://github.com/zhufq00/mcnc}.
translated by 谷歌翻译
Query-focused summarization has been considered as an important extension for text summarization. It aims to generate a concise highlight for a given query. Different from text summarization, query-focused summarization has long been plagued by the problem of lacking high-quality large-scale datasets. In this paper, we investigate the idea that whether we can integrate and transfer the knowledge of text summarization and question answering to assist the few-shot learning in query-focused summarization. Here, we propose prefix-merging, a prefix-based pretraining strategy for few-shot learning in query-focused summarization. Drawn inspiration from prefix-tuning, we are allowed to integrate the task knowledge from text summarization and question answering into a properly designed prefix and apply the merged prefix to query-focused summarization. With only a small amount of trainable parameters, prefix-merging outperforms fine-tuning on query-focused summarization. We further discuss the influence of different prefix designs and propose a visualized explanation for how prefix-merging works.
translated by 谷歌翻译
本文介绍了一种多模式运动计划(MMP)算法,该算法结合了三维(3-D)路径计划和DWA障碍避免算法。该算法旨在计划复杂的非结构化场景中超越障碍物的机器人的路径和运动。提出了一种新颖的A-Star算法来结合非结构化场景的特征,并将其切换为贪婪的最佳优先策略算法的策略。同时,路径计划的算法与DWA算法集成在一起,因此机器人可以在沿着全球计划的路径运动过程中执行局部动态障碍。此外,当提议的全球路径计划算法与局部障碍算法结合使用时,机器人可以在避免障碍物和克服障碍物后纠正道路。具有几个复杂环境的工厂中的仿真实验验证了算法的可行性和鲁棒性。该算法可以迅速为超越障碍物的机器人生成合理的3D路径,并在考虑场景和运动障碍物的特征的前提下进行可靠的当地障碍。
translated by 谷歌翻译
随着经济和社会的增长,企业,尤其是在金融科技行业中,对客户收集,市场营销,反欺诈电话等对客户的需求不断增加。但是,大部分重复性和机械工作都占据了人类代理商的大部分时间,因此企业的设备和劳动力成本正在增加。同时,随着过去几十年来人工智能技术的发展,公司使用大数据和人工智能等新技术来增强呼叫业务的能力已变得非常普遍。智能出站机器人是人工智能技术在出站呼叫业务领域的典型应用。它主要用于与客户交流以实现某个目标。它具有低成本,高额重用和易于合规性的特征,这引起了行业的更多关注。目前,该行业有两种智能出站机器人,但他们俩仍然为改进留下了巨大的空间。其中一种是基于有限状态机,该机器依赖于跳跃条件和基于手动体验的相应节点的配置。这种智能出站机器人也称为基于流的机器人。例如,图\ ref {图:标签}中显示了基于流的机器人的工作模型的示意图。在每个回合中,机器人将用与每个节点相对应的单词回复用户。
translated by 谷歌翻译
实时和高性能3D对象检测对于自动驾驶至关重要。最近表现最佳的3D对象探测器主要依赖于基于点或基于3D Voxel的卷积,这两者在计算上均无效地部署。相比之下,基于支柱的方法仅使用2D卷积,从而消耗了较少的计算资源,但它们的检测准确性远远落后于基于体素的对应物。在本文中,通过检查基于支柱和体素的探测器之间的主要性能差距,我们开发了一个实时和高性能的柱子检测器,称为Pillarnet。提出的柱子由一个强大的编码网络组成,用于有效的支柱特征学习,用于空间语义特征融合的颈网和常用的检测头。仅使用2D卷积,Pillarnet具有可选的支柱尺寸的灵活性,并与经典的2D CNN骨架兼容,例如VGGNET和RESNET.ADITIONICLY,Pillarnet受益于我们设计的方向iOu decoupled iou Recressions you Recressions损失以及IOU Aware Pareace Predication Prediction Predictight offication Branch。大规模Nuscenes数据集和Waymo Open数据集的广泛实验结果表明,在有效性和效率方面,所提出的Pillarnet在最新的3D检测器上表现良好。源代码可在https://github.com/agent-sgs/pillarnet.git上找到。
translated by 谷歌翻译
良好的善解人意对话系统应首先跟踪并理解用户的情绪,然后以适当的情感回复。但是,目前对此任务的方法要么集中于提高对用户情绪的理解或提出更好的反应策略,而且很少有作品同时考虑这两种工作。我们的工作试图填补这一空缺。受到任务导向对话系统的启发,我们提出了一种具有情感感知对话管理的新颖善解人意的响应生成模型。情绪感知对话管理包含两个部分:(1)情绪状态跟踪保持当前用户的情绪状态,(2)善解人意的对话策略选择预测目标情绪和用户的意图,基于情绪状态跟踪的结果。然后,预测信息用于指导响应的产生。实验结果表明,与自动评估和人类评估下的几个基准相比,动态管理不同的信息可以帮助模型产生更多的移情反应。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译